DETECTION OF VITAMIN B\textsubscript{12} IN DIFFERENT COW MILK USING ELISA TECHNIQUE

Gökşur TERZI1, Ufuk KAMBER2, Cevat NISBET3, Sena ÇENESIZ2

Geliş Tarihi : 06.05.2008
Kabul Tarihi : 25.06.2008

Abstract : Vitamin B\textsubscript{12} is a member of the vitamin B complex. It contains cobalt, and is also known as cobalamin. It is exclusively synthesised by bacteria and is found primarily in fish, meat, poultry, eggs, milk and milk products. Vitamin B\textsubscript{12} deficiency have an underlying stomach or intestinal disorder that limits the absorption of vitamin B\textsubscript{12} and might be caused to megaloblastic anemia. In this study cow milk samples were collected from in two different region in Turkey. In milk samples the amount of vitamin B\textsubscript{12} was detected by using ELISA. The vitamin B\textsubscript{12} concentrations of milk samples obtained from the cows of Holstein, Jersey, Jersey, Zavot and East Anatolian Red species were determined as 0.98µg/L, 1.15µg/L, 2.93µg/L and 1.56µg/L, respectively. The concentrations of vitamin B\textsubscript{12} in Zavot cows milk were higher than the other species.

Key Words: Vitamin B\textsubscript{12}, cow milk, ELISA.

I n t r o d u c t i o n

Vitamin B\textsubscript{12} (cyanocobalamin) has an important function in human health. Vitamin B\textsubscript{12} is synthesised by bacteria and it is naturally found in foods that come from animals, including fish, meat, poultry, eggs, milk, and milk products. In many animals gastrointestinal fermentation supports the growth of these vitamin B\textsubscript{12} synthesising microorganisms, and subsequently the vitamin is absorbed and incorporated into the animal tissues (18).

Although it changes due to age, lactation and pregnancy status, daily amount of vitamin B\textsubscript{12} needed to be taken by foodstuffs is 2.4µg/day for an adult human. Hematological, neurological and gastrointestinal symptoms are formed due to lack of this vitamin in humans (10).

Vitamin B\textsubscript{12} deficiency in infants often produces haematological and neurological deficits, including macrocytic anaemia (15), fatigue, weakness, constipation, loss of appetite, and weight loss (4, 7, 13) decreased red blood cell count, pallor of the skin, numbness and tingling in the hands and legs (10, 12), excessive fatigue, depression and memory loss (6).

Milk is the most nutritionally complete food, containing nearly all the constituents of nutritional importance to humans (10). There are total 9 million bovines and 18 million ovines in Turkey. 5 million of these bovines are cattle. 28% of cattle is also used in production of meat, including fish, meat, poultry, eggs, milk, and milk products. Vitamin B\textsubscript{12} deficiency have an underlying stomach or intestinal disorder that limits the absorption of vitamin B\textsubscript{12} and might be caused to megaloblastic anemia. In this study cow milk samples were collected from in two different region in Turkey. In milk samples the amount of vitamin B\textsubscript{12} was detected by using ELISA. The vitamin B\textsubscript{12} concentrations of milk samples obtained from the cows of Holstein, Jersey, Jersey, Zavot and East Anatolian Red species were determined as 0.98µg/L, 1.15µg/L, 2.93µg/L and 1.56µg/L, respectively. The concentrations of vitamin B\textsubscript{12} in Zavot cows milk were higher than the other species.

Key Words: Vitamin B\textsubscript{12}, cow milk, ELISA.
of East Anatolia Red. It is an animal that adapted hard climate of East Anatolia. It has fattening characteristics. Although it changes due to feeding, its annual milk productivity is about 600 and 1200 litres (2, 3).

Zavot Cattle race as other race faced to be disappeared has grizzly-gray color and is a race that adapted in Kars region in Turkey. It has been obtained by hybridization of Simental and Swiss Swarty. Its milk has 4% fat and annual milk productivity is 1500 litres. Its fattening characteristics are better than East Anatolia Red. Zavot cattle are among the most important cattle race in Turkey and have higher productivity rate than other native cattle (3).

There is no information about vitamin B₁₂ in milk of Zavot and East Anatolia Red cattle races. So, to determine values of vitamin B₁₂ in Zavot and East Anatolia Red cattle race as native cattle races of Turkey and to compare those values with Holstein and Jersey cattle races as cultivated race are purposed in this study.

Material and Methods

Sampling: Four groups of individual milk samples obtained from Samsun and Kars regions of Turkey were studied. The study was carried out in winter season of 2007. 40 milks were obtained 10 from each group. Holstein and Jersey cows were obtained from Samsun, Zavot and East Anatolian, while Red cows were obtained from Kars in Turkey. Milk samples were randomly collected after the complete morning milking. Samples were collected from 8 different cow farms. The animals used in study were selected from 2nd and 3rd months of lactation period, dry rough feed and straw breeding in same stable conditions. The milk samples were brought to laboratory with sterile glass bottles under the cold chain prevented from light.

Apparatus: For the Vitamin B₁₂ analyses, a Digital and Analog Systems DAS RS 232 ELISA plate reader was used. Measure the optical density at 450nm.

Preparation of samples: For degreasing centrifuge the sample at 3500 g for 10 min at 10°C (50 °F). Remove upper cream layer by aspirating through a pasteur pipette under vacuum stream. Employ 50 µl of the defatted milk per well in the assay.

ELISA test procedure: Vitamin B₁₂ levels in milk samples were determined according to test procedure of Ridascreen Fast Vitamin B₁₂ ELISA (R-Biopharm A.G. Kit, Art No: R2102 Darmstad, Germany) and results were evaluated in ELISA reader (DAS). Insert a sufficient number of wells into the microwell holder for all standards and samples to be run. Record standard and sample positions. Measure the absorbance at 450 nm against an air blank. Read within 10 minutes.

Data analysis: Statistical analysis of data was carried out using SPSS statistical package programs. All experimental results were means ± SE of three parallel measurements. The results were evaluated by using one–way ANOVA and any significant differences further evaluated using the Tukey multiple–comparison test. The level of significance was set at p<0.05.

Results and Discussion

The vitamin B₁₂ concentrations of milk samples obtained from the cows of Holstein, Jersey, Zavot and East Anatolian Red species are presented in Table 1 with ranges, means and SE. The results indicate that the concentration varied from 0.77 to 1.20 with a mean of 0.98 µg/L for Holstein cows milk, from 0.94 to 1.36 with mean of 1.15 µg/L for Jersey cows milk, from 1.96 to 3.89 with mean of 2.93 µg/L for Zavot cows milk, from 1.15 to 1.97 with mean of 1.56 µg/L for East Anatolian Red cows milk. Statistical analysis of results were evaluated by ANOVA. The concentrations of vitamin B₁₂ in Zavot cows milk were significantly higher than the other species (p<0.05).

In this study, Vitamin B₁₂ level in races of Holstein and Jersey having higher annual milk productivity (approximately 3000 litres/year) has been determined lower than Zavot and East Anatolia Red cattle races having lower annual milk productivity (approximately 1500 litres/year).

Vitamin B₁₂ is synthesized by rumen microbes from dietary cobalt and the clinical signs of cobalt deficiency in sheep and cattle are due to reduced vitamin B₁₂ concentrations in tissue (14). Vitamin B₁₂ level shows difference due to race, environment, feeding, and cobalt addition to foods and lactation period. Cobalt is a necessary element for synthesis of vitamin B₁₂. Microorganisms in rumen synthesize vitamin B₁₂ by using cobalt. Clover, melas, corn, corn silage, cotton seed pulp, fish flour, meat flour, fowl side products, rice bran, sorgum, soybean pulp are food material having richer cobalt amount.

Cattle races used in study have been grown in same stable conditions and feed by rough food and straw and effect of cobalt on formation of vitamin B₁₂ has been examined.

The mean value of vitamin B₁₂ found in this study was higher than that reported by Sawaya et al.(16) for goat milk. According to Sawaya et al. (16) the concentration of vitamin B₁₂ in Aardi and Masri goat milk samples were 0.7 and 0.6 µg/L, respectively. The average content of vitamin B₁₂ was lower than that reported by Bestuzheva ³ for camel milk on the other hand, the concentrations of vitamin B₁₂ in Zavot cows milk were similar to the content reported by Alais (1) for cow milk.
Detection Of Vitamin B₁₂ In Different Cow Milk Using Elisa Technique

In studies made in human milk, the amount of vitamin B₁₂ was determined in level of 0.4-0.8µg/L (9, 8, 19, 23, 11). In this study, it is seen that amount of vitamin B₁₂ in cattle milk is higher than human milk when compared.

Shrimpton and Duckworth (17) motioned that the vitamin B₁₂ concentrations of milk samples obtained from the sheep of Lowland and Hill species were found as 1.3 to 5.0 µg/L, respectively In study performed, it is observed that level of vitamin B₁₂ shows difference in different races of same animal type.

Conclusions

Zavot and East Anatolia Red among native cattle race of Turkey is faced to be disappeared. Native races have adapted to special conditions of environment in which they have been grown for centuries. Although their low productivity, they have special characteristics, and are resistant animals that can reproduce in insufficient environment condition. So, necessary measures must be taken to protect animal gene sources in Turkey.

Table 1. Mean concentrations (µg/L) and standard error of Vitamin B₁₂ in different cow milk

<table>
<thead>
<tr>
<th>Milk sample</th>
<th>n</th>
<th>Vitamin B₁₂ (Mean±SE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Holstein</td>
<td>10</td>
<td>0.98±0.09a</td>
</tr>
<tr>
<td>Jersey</td>
<td>10</td>
<td>1.15±0.09a</td>
</tr>
<tr>
<td>Zavot</td>
<td>10</td>
<td>2.93±0.42b</td>
</tr>
<tr>
<td>East Anatolian Red</td>
<td>10</td>
<td>1.56±0.18a</td>
</tr>
</tbody>
</table>

a, b Show differences among cow milk (p < 0.05), tukey test.

References

