Prevalence of *Listeria monocytogenes*, *Salmonella* spp. and *Escherichia coli* O157:H7 in Raw Milk

Ghassan ISSA 1, Tolga KAHRAMAN 1*, Beren KAHRAMAN 2

1 Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, Istanbul University, Turkey
2 Department of Microbiology, Faculty of Veterinary Medicine, Istanbul University, Turkey

*Corresponding Author: Tolga KAHRAMAN
Department of Food Hygiene and Technology, Faculty of Veterinary Medicine
Istanbul University 34320 Avcilar, Istanbul, Turkey
Tel: +90–212–4737070/17155; Fax: +90–212–4737241; E-mail address: tolgakah@istanbul.edu.tr

Geliş Tarihi / Received: 10.02.2010

ABSTRACT

The present study was undertaken to investigate the incidence of *Listeria monocytogenes*, *Salmonella* spp. and *Escherichia coli* O157:H7 in 350 composite milk samples (four quarters in one collection vial) obtained from five different farms in Istanbul. Each sample was aseptically taken straight from udder of individual cattle. The results showed that 0.57% (2/350) of milk samples were contaminated with *L. monocytogenes*. *Salmonella* spp. and *E. coli* O157:H7 were not detected in any samples. In conclusion, considering that the mortality of listeriosis is very high, low prevalence rate of *L. monocytogenes* should not be disregarded. Therefore, it is essential to ensure improving the quality of production technology and developing the sanitation strategies for enhancing the safety of food. **Keywords: Raw Milk, Listeria monocytogenes, Salmonella spp., Escherichia coli O157:H7**

Introduction

Milk is the fluid secreted by mammals for the nourishment of their young. The principal components of milk are water, fat, protein and lactose. High water activity, moderate pH (6.4-6.6) and ample supply of nutrients make milk an excellent culture medium for microorganisms, in particular certain pathogens (Adams and Moss, 2008). Pathogenic bacteria in raw milk have been a major factor for public health concern. The main sources of contamination are the dairy cattle; food handler, dairy equipments and consumption of raw milk are considered to be the main cause of several outbreaks of *Listeria monocytogenes*, *Salmonella* spp. and *Escherichia coli* O157:H7. Each year millions of cases occur that most of these infections cause mild illness, severe infections and serious complications including death (Robinson et al., 2000).

L. monocytogenes is a psychrotrophic microorganism that is capable of growing at refrigeration temperature and at relatively low pH. These characteristics make *L. monocytogenes* particularly difficult to control in food therefore contamination could lead to high risk factor (Hobbs and Roberts, 1993). In Turkey, several studies have indicated that *L. monocytogenes*...
Listeria monocytogenes is present in raw milk and the reported rates of contamination vary from 0% to 18.2% (Sharif and Tunail, 1991; Unlu et al., 1998; Aygun and Pehlivanlar, 2005; Soyutemiz et al., 2001; Gun, 1994).

Salmonella spp. is one of the most important pathogenic genera implicated in food borne bacterial outbreaks. It rarely produces clinical disease that include nausea, vomiting, septicemia, headache, diarrhea, abdominal cramps and fever; additional complications associated with septicemia and arthritis (Downes and Ito, 2001). In the last few years, several outbreaks of salmonellosis have been reported in Scotland, England and Wales due to the consumption of contaminated raw milk (De Buyser et al., 2001).

E. coli O157:H7 is neurotoxin producing enterohemorrhagic E. coli. It rarely produces clinical disease in animals but associated with hemolytic uremic syndrome, thrombocytopenic purpura and hemorrhagic colitis in human (Roberts et al., 1998). There have been some reports on the incidence of E. coli O157:H7 in raw milk in Greece (Dontorou et al., 2003), in France (Decludt, 1995) and in the USA (Keene et al., 1997).

The present study was undertaken to determine the prevalence of L. monocytogenes, Salmonella spp. and E. coli O157:H7 in raw milk samples obtained from different farms in Istanbul, the biggest city of Turkey.

Materials and Methods

Sample Collection

Raw milk samples were collected at intervals between September 2007 and December 2008. A total of 350 composite milk samples (four quarters in one collection vial) aseptically taken from udder of individual cattle were investigated for the presence of L. monocytogenes, Salmonella spp. and E. coli O157:H7 which were obtained from five different dairies at different regions of Istanbul. All samples (approximately 200 ml) were collected in sterile jars and immediately transferred to the laboratory in cold boxes at 4°C.

Microbiological Analysis

For the isolation of L. monocytogenes; 25 ml of milk samples were pummeled with 225 ml of Listeria Enrichment Broth (LEB) (Oxoid CM0862) containing Listeria selective supplement (Oxoid SR 141). Samples were homogenized in a stomacher bag for 60 sec. at normal speed and incubated at 32 ºC for 24 h. A 0.1 ml portion of the enrichment broth was streaked on to Chromogenic Listeria Agar (OCLA) (Oxoid CM1080) supplemented with Listeria Selective Supplement (Oxoid SR0227) and Listeria Differential Supplement (Oxoid SR0228). After incubation typical colonies were transferred to Tryptic Soy Agar with Yeast Extract (TSYE) (Oxoid CM0131) and incubated for 24-48 h at 30°C. The typical colonies were identified by Gram’s staining, catalase reaction, tumbling motility at 20-25 ºC, Methyl Red-Vogues Proskauer (MR-VP) reactions, CAMP test, nitrate reduction and fermentation of sugars (Hitchins, 1995).

For detection of Salmonella spp., pre-enrichment was done by suspending 25 ml of sample in 225 ml buffered peptone water (BPW) (Oxoid CM0509) followed by incubation at 37°C for 16-20 h. 0,1 ml mixture was transferred to Rappaport-Vassiliadis (RV) (Oxoid CM0866) and Muller KaufmannTetraphionate Broth (MKTTn) (Oxoid CM0343). MKTTn and RV broth was incubated for 24h at 42°C. After incubation samples were streaked on Hectoen Enteric Agar (HE) (Oxoid CM0419) and XLD Agar (Oxoid CM0469), incubated for 24h at 35°C. The typical colonies were identified by Triple Sugar Iron Agar (TSI) (Oxoid CM0277), Lysin Iron Agar (LIA) (Oxoid CM0381), urease test (Oxoid CM0071) and confirmed with Salmonella antiserum (O and H-Vi polyvalan antiserum) (Harrigan, 1998).

For detection of E. coli O157:H7, each sample were carried out by combining 25 ml of each sample with 225 ml of modified Tryptone Soya Broth with novobiocin (m-TSB) (Oxoid CM0989) into a stomacher bag, homogenized
for at least 2 min into a stomacher and incubated at 37°C for 24 h. Enriched culture was streaked on to Sorbitol MacConkey Agar (Oxoid CM0813) supplemented with Cefixime Tellurite Selective Supplement (CT) (Oxoid SR172) which were incubated at 37 °C for 18–24 h. Following the incubation period, the colorless colonies were tested by E. coli O157 latex kit (Oxoid DR0620) (Hitchins et al., 2000).

Results

In the present study, the results showed that 6.57% of raw milk samples were contaminated with Listeria spp. and 2 (0.57%) were L. monocytogenes (Table 1). All samples were negative for Salmonella spp. and E. coli O157:H7. According to Turkish Food Codex (TFC, 2006), the presence of L. monocytogenes, Salmonella spp. and E. coli O157:H7 in 25 ml of raw milk is not acceptable.

Table 1. Prevalence of L. monocytogenes, Salmonella spp. and E. coli O157:H7 in raw milk samples

<table>
<thead>
<tr>
<th>Number of Samples</th>
<th>Listeria spp.</th>
<th>L. monocytogenes</th>
<th>Salmonella spp.</th>
<th>E. coli O157:H7</th>
</tr>
</thead>
<tbody>
<tr>
<td>350</td>
<td>23 (6.57%)</td>
<td>2 (0.57%)</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>

Discussion

Pathogenic bacteria in milk have been a major factor for public health concern. The role and importance of L. monocytogenes is becoming increasingly apparent. Raw milk samples have been examined in several countries for the presence of L. monocytogenes (Table 2). Gasparovic et al. (1989) collected 635 raw milk samples from Germany and 0.3% was found to be the positive for L. monocytogenes. Oni et al. (1989) reported 0.7% occurrence of L. monocytogenes in raw milk in Nigeria. Our findings showed approximately similarity with these results. Contrary to this, the studies which had higher results (44.7%, 7.0%, 15.3% and 5.0%) than ours were reported by Garayzabal et al. (1987), Lovett et al. (1987), Harvey and Gilmour (1992) and Erol and Sireli (2002), respectively. These differences may be originated from detection methods, sampling procedures and the geographical conditions. The reason for high contamination rate should be due to the insufficient hygienic conditions of equipments, including bulk tanks, churns, separators, heating and cooling units, using at milking, storage and transport.

L. monocytogenes is an intercellular parasite and can be present within leukocytes in contaminated milk. An intracellular state may confer heat resistance to the organism and allow some listeriae within leukocytes to survive pasteurization (Doyle et al., 1987). Hence, the low concentration of L. monocytogenes detected in this study, can also present a potential hazard.
Table 2. Incidence of L. monocytogenes in raw milk in Turkey and other countries

<table>
<thead>
<tr>
<th>Country</th>
<th>Number of Samples</th>
<th>Incidence</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>France</td>
<td>337</td>
<td>14 (4.2%)</td>
<td>Gledel (1988)</td>
</tr>
<tr>
<td>Holland</td>
<td>137</td>
<td>6 (4.4%)</td>
<td>Beckers et al. (1987)</td>
</tr>
<tr>
<td>Germany</td>
<td>635</td>
<td>2 (0.3%)</td>
<td>Gasparovic et al. (1989)</td>
</tr>
<tr>
<td>USA</td>
<td>200</td>
<td>14 (7.0%)</td>
<td>Lovett et al. (1987)</td>
</tr>
<tr>
<td>Turkey</td>
<td>100</td>
<td>4 (4.0%)</td>
<td>Gun (1994)</td>
</tr>
<tr>
<td>Turkey</td>
<td>47</td>
<td>0</td>
<td>Aygun and Pehlivanlar (2006)</td>
</tr>
<tr>
<td>Turkey</td>
<td>250</td>
<td>3 (1.2%)</td>
<td>Sagun et al. (2001)</td>
</tr>
<tr>
<td>Turkey</td>
<td>100</td>
<td>4 (4.0%)</td>
<td>Unlu et al. (1998)</td>
</tr>
<tr>
<td>Spain</td>
<td>67</td>
<td>30 (44.7%)</td>
<td>Garayzabal et al. (1987)</td>
</tr>
<tr>
<td>Nigeria</td>
<td>150</td>
<td>1 (0.7%)</td>
<td>Oni et al. (1989)</td>
</tr>
<tr>
<td>Canada</td>
<td>315</td>
<td>17 (5.4%)</td>
<td>Slade and Collins (1987)</td>
</tr>
<tr>
<td>USA</td>
<td>300</td>
<td>9 (3.0%)</td>
<td>Lund et al. (1991)</td>
</tr>
<tr>
<td>Turkey</td>
<td>100</td>
<td>3 (3.0%)</td>
<td>Soyutemiz et al. (2001)</td>
</tr>
<tr>
<td>Mexico</td>
<td>100</td>
<td>0</td>
<td>Angelica et al. (1995)</td>
</tr>
<tr>
<td>Turkey</td>
<td>77</td>
<td>14 (18.2%)</td>
<td>Sharif and Tunail (2001)</td>
</tr>
<tr>
<td>Mexico</td>
<td>1300</td>
<td>62 (13.0%)</td>
<td>Carlos et al. (2001)</td>
</tr>
<tr>
<td>India</td>
<td>2060</td>
<td>105 (5.0%)</td>
<td>Kalorey et al. (2008)</td>
</tr>
<tr>
<td>Spain</td>
<td>1445</td>
<td>37 (2.5%)</td>
<td>Gaya et al. (1996)</td>
</tr>
<tr>
<td>Turkey</td>
<td>80</td>
<td>4 (5.0%)</td>
<td>Erol and Sireli (2002)</td>
</tr>
<tr>
<td>N. Ireland</td>
<td>176</td>
<td>27 (15.3%)</td>
<td>Harvey and Gilmour (1992)</td>
</tr>
<tr>
<td>Malaysia</td>
<td>930</td>
<td>18 (1.9%)</td>
<td>Chye et al. (2004)</td>
</tr>
<tr>
<td>India</td>
<td>86</td>
<td>7 (8.1%)</td>
<td>Bhilegaonkar et al. (1997)</td>
</tr>
</tbody>
</table>

The prevalence of *Salmonella* spp. in milk samples tested in these studies were detected by O’Donnel (2007) in UK (0.36%), Chye et al. (2004) in Malaysia (1.4%) and Soyutemiz et al. (2000) in Turkey (1.0%). They explained the high *Salmonella* spp. prevalence with mishandling or improper hygiene. In general, *Salmonella* spp. is rarely indigenous present in milk. In this study, no *Salmonella* spp. was isolated. These results were in acceptance to the findings reported by Padungtod and Kaneene (2006), Ekici et al. (2004), Abd El-Atty and Meshref (2007) and Eleftheriadou et al. (2002).

In the present study, *E. coli* O157:H7 was not detected. Similar results were reported by Soyutemiz et al. (2000) in Turkey, Coia et al. (2001) in England, Heuvelink et al. (1998) in Holland and Ansay and Kaspar (1997) in USA. *E. coli* O157:H7 presents sporadically at very low levels together with very high levels of competitor organisms that’s why it is difficult to detect. In contrary, Chye et al. (2004), Dontorou et al. (2003) and Abdul-Raouf et al. (1996) demonstrated that *E. coli* O157:H7 was isolated from 33.53%, 0.3% and 6.0% of milk, respectively. In Turkey, few studies have detected *E. coli* O157:H7 in raw milk. Aslantas and Yildiz (2002) and Oksuz et al. (2004) found *E. coli* O157:H7 in 1 out of 100 samples.

Conclusion

In conclusion, the result of this study indicated that the incidence of *L. monocytogenes* in raw milk was low. However, considering that the mortality of listeriosis is
very high, low prevalence rate of *L. monocytogenes* should not be disregarded. Therefore, it is essential to ensure improving the quality of production technology and developing the sanitation strategies for enhancing the safety of food.

REFERENCES

International Journal of Food Microbiology 4, 249-56.

